> 文章列表 > 常微分和偏微分的区别是什么

常微分和偏微分的区别是什么

常微分和偏微分的区别是什么

解答:

1、dy/dx 是函数在x处的变化率;

2、(dy/dx)dx 是函数在x处的微分,也就是“变化率dy/dx”乘以“自变量的无穷小变化量dx”, dx是对x的微分,也就是x的无穷小的增量; (dy/dx)dx = dy 就是对y的微分了,也就是y的无穷小增量; (dy/dx)dx 的整体意思就是,在x处,由于x的无穷小的增量所产生的y的无穷小增量。

这些就是通常所说的微分的概念,也就是常微分的概念。

3、在多元函数中,因为自变量至少有两个,每一个自变量的变化,都会引起函数的变化。以三元函数 u=f(x,y,z) 为例, ∂u/∂x 表示的是由于x的单独变化而引起的函数u的变化率,或者说在x方向上的变化率; ∂u/∂y 表示的是由于y的单独变化而引起的函数u的变化率,或者说在y方向上的变化率; ∂u/∂z 表示的是由于z的单独变化而引起的函数u的变化率,或者说在z方向上的变化率。这里的符号∂,在意义上,完全等同于d,∂x=dx,∂y=dy,∂z=dz,∂u=du。由于是多元函数,引起函数u变化的因素不止一个,为了表示区别,不用d,而用∂。

4、(∂u/∂x)dx 表示的是由于x的单独变化dx,所引起的函数u的变化量,也就是u对x的偏微分; (∂u/∂y)dy 表示的是由于y的单独变化dy,所引起的函数u的变化量,也就是u对y的偏微分; (∂u/∂z)dz 表示的是由于y的单独变化dz,所引起的函数u的变化量,也就是u对z的偏微分。

5、全微分的概念(Total Differentiation): 如果所有变量的变化都考虑进去,所有变量变化所引起的整个函数的变化,则是全微分: du = (∂u/∂x)dx + (∂u/∂y)dy + (∂u/∂z)dz,其中的三个部分是三个偏微分。欢迎追问。