> 设计知识 > 如何判断一阶偏导数连续

如何判断一阶偏导数连续

如何判断一阶偏导数连续

导数连续证明方法:

先用定义求出该点的偏导数值c,再用求导公式求出不在该点时的偏导数fx(x,y),最后求fx(,x,y)当(x,y)趋于该点时的极限,如果limfx(x,y)=c,即偏导数连续,否则不连续。

1、偏导数的求法:

函数 z=f(x,y) 在 (x0,y0)的两个偏导数 f\'x(x0,y0) 与 f\'y(x0,y0)都存在时,我们称 f(x,y) 在 (x0,y0)处可导。如果函数 f(x,y) 在域 D 的每一点均可导,那么称函数 f(x,y) 在域 D 可导。

此时,对应于域 D 的每一点 (x,y) ,必有一个对 x (对 y )的偏导数,因而在域 D 确定了一个新的二元函数,称为 f(x,y) 对 x (对 y )的偏导函数。简称偏导数。

按偏导数的定义,将多元函数关于一个自变量求偏导数时,就将其余的自变量看成常数,此时他的求导方法与一元函数导数的求法是一样的。

2、偏导数的几何意义:

偏导数 f\'x(x0,y0) 表示固定面上一点对 x 轴的切线斜率;偏导数 f\'y(x0,y0) 表示固定面上一点对 y 轴的切线斜率。

高阶偏导数:如果二元函数 z=f(x,y) 的偏导数 f\'x(x,y) 与 f\'y(x,y) 仍然可导,那么这两个偏导函数的偏导数称为 z=f(x,y) 的二阶偏导数。二元函数的二阶偏导数有四个:f\"xx,f\"xy,f\"yx,f\"yy。

注意:

f\"xy与f\"yx的区别在于:前者是先对 x 求偏导,然后将所得的偏导函数再对 y 求偏导;后者是先对 y 求偏导再对 x 求偏导。当 f\"xy 与 f\"yx 都连续时,求导的结果与先后次序无关。